Computations of Delaunay and higher order triangulations, with applications to splines

نویسندگان

  • Yuanxin Liu
  • Wenjie He
  • Dinesh Manocha
  • Jack Snoeyink
چکیده

Yuanxin Liu: Computations of Delaunay and higher order triangulations, with applications to splines. (Under the direction of Jack Snoeyink.) Digital data that consist of discrete points are frequently captured and processed by scientific and engineering applications. Due to the rapid advance of new data gathering technologies, data set sizes are increasing, and the data distributions are becoming more irregular. These trends call for new computational tools that are both efficient enough to handle large data sets and flexible enough to accommodate irregularity. A mathematical foundation that is well-suited for developing such tools is triangulation, which can be defined for discrete point sets with little assumption about their distribution. The potential benefits from using triangulation are not fully exploited. The challenges fundamentally stem from the complexity of the triangulation structure, which generally takes more space to represent than the input points. This complexity makes developing a triangulation program a delicate task, particularly when it is important that the program runs fast and robustly over large data. This thesis addresses these challenges in two parts. The first part concentrates on techniques designed for efficiently and robustly computing Delaunay triangulations of three kinds of practical data: the terrain data from LIDAR sensors commonly found in GIS, the atom coordinate data used for biological applications, and the time varying volume data generated from from scientific simulations. The second part addresses the problem of defining spline spaces over triangulations in two dimensions. It does so by generalizing Delaunay configurations, defined as follows. For a given point set P in two dimensions, a Delaunay configuration is a pair of subsets (T, I) from P , where T , called the boundary set, is a triplet and I, called the interior set, is the set of points that fall in the circumcircle through T . The size of the interior set is the degree of the configuration. As recently discovered by Neamtu (2004), for a chosen point set, the set of all degree k Delaunay configurations can be associated with a set of degree k + 1 splines that form the basis of a spline space. In particular, for the trivial case of k = 0, the spline space coincides with the PL interpolation functions over the Delaunay triangulation. Neamtu’s definition of the spline space relies only on a few structural properties of the Delaunay configurations. This raises the question whether there exist other sets of configurations with identical structural properties. If there are, then these sets of configurations—let us call them generalized configurations from hereon—can be substituted for Delaunay configurations in Neamtu’s definition of spline space thereby yielding a family of splines over the same point set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a Definition of Higher Order Constrained Delaunay Triangulations

When a triangulation of a set of points and edges is required, the constrained Delaunay triangulation is often the preferred choice because of its well-shaped triangles. However, in applications like terrain modeling, it is sometimes necessary to have flexibility to optimize some other aspect of the triangulation, while still having nicely-shaped triangles and including a set of constraints. Hi...

متن کامل

Optimal N-term approximation by linear splines over anisotropic Delaunay triangulations

Anisotropic triangulations provide efficient geometrical methods for sparse representations of bivariate functions from discrete data, in particular from image data. In previous work, we have proposed a locally adaptive method for efficient image approximation, called adaptive thinning, which relies on linear splines over anisotropic Delaunay triangulations. In this paper, we prove asymptotical...

متن کامل

Generating Realistic Terrains with Higher-Order Delaunay Triangulations

For hydrologic applications, terrain models should have few local minima, and drainage lines should coincide with edges. We show that triangulating a set of points with elevations such that the number of local minima of the resulting terrain is minimized is NP-hard for degenerate point sets. The same result applies when there are no degeneracies for higher-order Delaunay triangulations. Two heu...

متن کامل

On the Number of Higher Order Delaunay Triangulations

Higher order Delaunay triangulations are a generalization of the Delaunay triangulation which provides a class of well-shaped triangulations, over which extra criteria can be optimized. A triangulation is order-k Delaunay if the circumcircle of each triangle of the triangulation contains at most k points. In this paper we study lower and upper bounds on the number of higher order Delaunay trian...

متن کامل

Minimizing local minima in terrains with higher-order Delaunay triangulations

We show that triangulating a set of points with elevations such that the number of local minima of the resulting terrain is minimized is NP-hard for degenerate point sets. The same result applies when there are no degeneracies for higher-order Delaunay triangulations. Two heuristics are presented to minimize the number of local minima for higher-order Delaunay triangulations, and they are compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008